

DPP – Elasticity		
Video Solution on Website:-	https://physicsaholics.com/home/courseDetails/85	
Video Solution on YouTube:-	https://youtu.be/1JaFRes52EM	
Written Solution on Website:-	https://physicsaholics.com/note/notesDetalis/24	

Q 1. The adjacent graph shows the extension (Δl) of a wire of length 1 m suspended from the top of a roof at one end and with a load W connected to the other end. If the cross-sectional area of the wire is 10⁻⁶ m², calculate the Young's modulus of the material of the wire:

Q 2. A constant force F_0 is applied on a string placed over a smooth horizontal uniform elastic string surface as shown in figure. Young's modulus of string is Y and area of cross-section is S. The strain produced in the string in the direction of force is:

Q 3. A uniform rod of mass m and length L has area of cross-section A and young modulus γ . This rod is rotating about its one end with angular velocity ω . Elongation in length of rod is (Gravity is absent)

(a)
$$\frac{ml^2\omega^2}{3A\gamma}$$
 (b) $\frac{ml^2\omega^2}{2A\gamma}$ (c) $\frac{ml^2\omega^2}{6A\gamma}$ (d) $\frac{ml^2\omega^2}{4A\gamma}$

Q 4. If ρ is the density of the material of a wire and σ is breaking stress. The greatest length of the wire that can hang freely without breaking is: (a) $\frac{2\sigma}{\rho g}$ (b) $\frac{\rho}{\sigma g}$ (c) $\frac{\rho g}{2\sigma}$ (d) $\frac{\sigma}{\rho g}$

Q 5. A uniform rod of length L has a mass per unit length λ and area of cross-section A. The elongation in the rod is *l* due to its own weight if it is suspended from the ceiling of a room. The Young's modulus of the rod is:

(a)
$$\frac{2\pi g L^2}{Al}$$
 (b) $\frac{\lambda g L^2}{2Al}$ (c) $\frac{2\lambda g L}{Al}$ (d) $\frac{\lambda g l^2}{AL}$

Q 6. A uniform slender rod of length L, cross-sectional area A and Young's modulus Y is acted upon by the forces shown in the figure. The elongation of the rod is

Q 7. Two wires of the same material (Young's modulus Y) and same length L but radii R and 2R respectively are joined end to end and a weight W is suspended from the combination as shown in the figure. The elastic potential energy in the system is

Q 8. A copper wire of cross – section A is under a tension T. Find the decrease in the cross – section area. Young's modulus is Y and Poisson's ratio is σ . (a) $\frac{\sigma T}{2AY}$ (b) $\frac{\sigma T}{AY}$ (c) $\frac{2\sigma T}{AY}$ (d) $\frac{4\sigma T}{AY}$

Q 9. A bar of cross – section A is subjected to equal and opposite tensile forces F at its ends. Consider a plane through the bar making an angle θ with a plane at right angle to the bar. Then shearing stress will be maximum if θ

- Q 10. A steel plate has face area 4 cm² and thickness 0.5 cm is fixed rigidly at the lower surface. A tangential force of 10 N is applied on the upper surface. Find the lateral displacement of the upper surface with respect to the lower surface. Rigidity modulus of steel = 8.4×10^{10} Nm⁻²
 - (a) $1.5 \ \mu m$ (b) $1.5 \ A^{\circ}$ (c) $1.5 \ nm$ (d) $1.5 \ pm$

 Lg^2m^2

6Aγ

 Lg^2m^2

 $2A\gamma$

(a)

(c)

3KA

Q 11. A stone of mass m tied to one end of a thread of length *l*. The diameter of the thread is d and it is suspended vertically. The stone is now rotated in a horizontal plane and makes an angle θ with the vertical. Find the increase in length of the wire. Youngs modulus of the wire is Y

(a) $\frac{4mgl}{\pi d^2 Y \cos \theta}$	(b) $\frac{4mgl}{\pi d^2 Y \sin \theta}$
(c) $\frac{4mgl}{\pi d^2 Y}$	(d) $\frac{4mgl}{\pi d^2 Y \sec \theta}$

Q 12. The modulus of elasticity of a gas at constant temperature is (Symbols have their usual meanings) (c) P (a) γP (b) P/γ (d) P/V

Q 13. A solid sphere of radius R and bulk modulus of elasticity K is kept in a liquid inside a cylindrical container. A massless piston of cross-sectional area A floats on liquid surface. A mass M is put on the piston in order to compress the liquid. The fractional change in the radius of the sphere will be (a) $\frac{3Mg}{KA}$ (b) $\frac{3Mg}{2KA}$ (c) (d)

- Q 14. A cable that can support a load W is cut into two equal parts. The maximum load that can be supported by either part is-(d) 2 W(a) W/4 (b) W/2(c) W
- Q 15. A uniform rod of mass m and length L has area of cross-section A and young modulus γ . Elastic potential energy of rod if it is suspended from the ceiling of a room, is (b) $\frac{Lg^2m^2}{m^2}$

3Ay

Answer Key

Q.1 a	Q.2 c	Q.3 a	Q.4 d	Q.5 b
Q.6 d	Q.7 c	Q.8 c	Q.9 c	Q.10 c
Q.11 a	Q.12 c	Q.13 d	Q.14 c	Q.15 a