DPP - Elasticity

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/85

Video Solution on YouTube:- https://youtu.be/1JaFRes52EM

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/24

Q 1. The adjacent graph shows the extension (Δl) of a wire of length 1 m suspended from the top of a roof at one end and with a load W connected to the other end. If the crosssectional area of the wire is $10^{-6} \mathrm{~m}^{2}$, calculate the Young's modulus of the material of the wire:

(a) $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
(b) $2 \times 10^{-11} \mathrm{~N} / \mathrm{m}^{2}$
(c) $3 \times 10^{12} \mathrm{~N} / \mathrm{m}$
(d) $2 \times 10^{13} \mathrm{~N} / \mathrm{m}^{2}$

Q 2. A constant force F_{0} is applied on a string placed over a smooth horizontal uniform elastic string surface as shgwn in figure. Young's modulus of string is Y and area of cross-section is S . Thestrain produced in the string in the direction of force is:

(a) $\frac{F_{0} Y}{S}$
(b) $\frac{F_{0}}{S Y}$
(c) $\frac{F_{0}}{2 S Y}$
(d) $\frac{F_{0} Y}{2 S}$

Q 3. A uniform rod of mass m and length L has area of cross-section A and young modulus γ. This rod is rotating about its one end with angular velocity ω. Elongation in length of rod is (Gravity is absent)
(a) $\frac{m l^{2} \omega^{2}}{3 A \gamma}$
(b) $\frac{m l^{2} \omega^{2}}{2 A \gamma}$
(c) $\frac{m l^{2} \omega^{2}}{6 A \gamma}$
(d) $\frac{m l^{2} \omega^{2}}{4 A \gamma}$

Q 4. If ρ is the density of the material of a wire and σ is breaking stress. The greatest length of the wire that can hang freely without breaking is:
(a) $\frac{2 \sigma}{\rho g}$
(b) $\frac{\rho}{\sigma g}$
(c) $\frac{\rho g}{2 \sigma}$
(d) $\frac{\sigma}{\rho g}$

Q 5. A uniform rod of length L has a mass per unit length λ and area of cross-section A. The elongation in the rod is l due to its own weight if it is suspended from the ceiling of a room. The Young's modulus of the rod is:
(a) $\frac{2 \pi g L^{2}}{A l}$
(b) $\frac{\lambda g L^{2}}{2 A l}$
(c) $\frac{2 \lambda g L}{A l}$
(d) $\frac{\lambda g l^{2}}{A L}$

Q 6. A uniform slender rod of length L, cross-sectional area A and Young's modulus Y is acted upon by the forces shown in the figure. The elongation of the rod is

(a) $3 \mathrm{FL} / 5 \mathrm{AY}$
(b) $2 \mathrm{FL} / 5 \mathrm{AY}$
(c) $3 \mathrm{FL} / 8 \mathrm{AY}$
(d) $8 \mathrm{FL} / 3 \mathrm{AY}$

Q 7. Two wires of the same material (Young's modulus Y) and same length L but radii R and 2 R respectively are joined end to end and a weight W is suspended from the combination as shown in the figure. The elastic potential energy in the system is

(a) $\frac{3 W^{2} L}{4 \pi R^{2} Y}$
(b) $\frac{3 W^{2} L}{8 \pi R^{2} Y}$
(c) $\frac{5 W^{2} L}{8 \pi R^{2} Y}$
(d) $\frac{W^{2} L}{\pi R^{2} Y}$

Q 8. A copper wire of cross - section A is under a tension T. Find the decrease in the cross -section area. Young's modulus is Y and Poisson's ratio is σ.
(a) $\frac{\sigma T}{2 A Y}$
(b) $\frac{\sigma T}{A Y}$
(c) $\frac{2 \sigma T}{A Y}$
(d) $\frac{4 \sigma T}{A Y}$

Q 9. A bar of Cross-section A is subjected to equal and opposite tensile forces F at its ends. Consider a plane through the bar making an angle θ with a plane at right angle to the bar. Then shearing stress will be maximum if θ

(a) 0°
(b) 30°
(c) 45°
(d) 60°

Q 10. A steel plate has face area $4 \mathrm{~cm}^{2}$ and thickness 0.5 cm is fixed rigidly at the lower surface. A tangential force of 10 N is applied on the upper surface. Find the lateral displacement of the upper surface with respect to the lower surface. Rigidity modulus of steel $=8.4 \times 10^{10} \mathrm{Nm}^{-2}$
(a) $1.5 \mu \mathrm{~m}$
(b) $1.5 \mathrm{~A}^{0}$
(c) 1.5 nm
(d) 1.5 pm

hysicsaholics

Q 11. A stone of mass m tied to one end of a thread of length l. The diameter of the thread is d and it is suspended vertically. The stone is now rotated in a horizontal plane and makes an angle θ with the vertical. Find the increase in length of the wire. Youngs modulus of the wire is Y
(a) $\frac{4 m g l}{\pi d^{2} Y \cos \theta}$
(b) $\frac{4 m g l}{\pi d^{2} Y \sin \theta}$
(c) $\frac{4 m g l}{\pi d^{2} Y}$
(d) $\frac{4 m g l}{\pi d^{2} Y \sec \theta}$

Q 12. The modulus of elasticity of a gas at constant temperature is (Symbols have their usual meanings)
(a) $\gamma \mathrm{P}$
(b) P / γ
(c) P
(d) P/V

Q 13. A solid sphere of radius R and bulk modulus of elasticity K is kept in a liquid inside a cylindrical container. A massless piston of cross-sectional area A floats on liquid surface. A mass M is put on the piston in order to compress the liquid. The fractional change in the radius of the sphere will be
(a) $\frac{3 M g}{K A}$
(b) $\frac{3 M g}{2 K A}$
(c) $\frac{M g}{K A}$
(d) $\frac{M g}{3 K A}$

Q 14. A cable that can support a load W is cut into two equal parts. The maximum load that can be supported by either part is-
(a) W/4
(b) $\mathrm{W} / 2$
(c) W
(d) $2 . \mathrm{W}$

Q 15. A uniform rod of mass m and length L has area of cross section A and young modulus γ. Elastic potential energy of rod if it is suspended from the ceiling of a room, is
(a) $\frac{L g^{2} m^{2}}{6 A \gamma}$
(b) $\frac{L g^{2} m^{2}}{3 A}$
(c) $\frac{L g^{2} m^{2}}{2 A \eta}$
(d) $\frac{L g^{2} m^{2}}{A \gamma}$

Answer Key

Q. 1	a	Q. 2	c	Q. 3	a	Q. 4	d		Q. $5 \quad$ b
Q. 6	d	Q. $7 \quad$ c	Q. $8 \quad$ c	Q. $9 \quad$ c	Q. 10	c			
Q. 11	a	Q. $12 \quad$ c	Q. 13	d	Q. 14	c	Q. 15	a	

